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Objective: To confirm prior findings that the larger the maximum
monthly increase in solar insolation in springtime, the younger the age
of onset of bipolar disorder.
Method: Data were collected from 5536 patients at 50 sites in 32
countries on six continents. Onset occurred at 456 locations in 57
countries. Variables included solar insolation, birth-cohort, family
history, polarity of first episode and country physician density.
Results: There was a significant, inverse association between the
maximum monthly increase in solar insolation at the onset location,
and the age of onset. This effect was reduced in those without a family
history of mood disorders and with a first episode of mania rather than
depression. The maximum monthly increase occurred in springtime.
The youngest birth-cohort had the youngest age of onset. All prior
relationships were confirmed using both the entire sample, and only the
youngest birth-cohort (all estimated coefficients P < 0.001).
Conclusion: A large increase in springtime solar insolation may impact
the onset of bipolar disorder, especially with a family history of mood
disorders. Recent societal changes that affect light exposure (LED
lighting, mobile devices backlit with LEDs) may influence adaptability
to a springtime circadian challenge.
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Significant outcomes

• There was a strong, inverse association between the maximum monthly increase in solar insolation in
springtime and the age of onset of bipolar I disorder using a global sample. The effect was reduced in
those without a family history of mood disorders.

• There was a large birth-cohort effect, with the youngest group having the youngest onset. Major soci-
etal changes that may affect vulnerability to a circadian challenge need investigation: exposure to
LED lighting, mobile devices backlit with LEDs, and the 24-h society.

Limitations

• The data collection process was not standardized. Data on family history or age of onset may be
unreliable.

• There was no individual data on behaviours or exposures that affect circadian rhythms.

• The sample was not demographically representative of the country populations.
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Introduction

There is considerable evidence of circadian rhythm
dysfunction in patients with bipolar disorder
including disturbances in the sleep/wake cycle,
activity patterns, melatonin secretion, as well as
suggestive associations with clock gene polymor-
phisms and epigenetic alterations (1–6). Clinical
symptoms that are frequently reported include
sleep timing disturbances (7), irregular daily sched-
ules (8), and an evening preference (9). These
symptoms of circadian disruption may occur dur-
ing episodes, while euthymic (7, 10–13), and in
those at high risk for bipolar disorder (7, 12, 14,
15). Even small changes to circadian rhythms such
as the shift to daylight savings time may have
adverse mental health consequences (16). In the
future, circadian symptoms and clock gene poly-
morphisms may help define endophenotypes of
bipolar disorder, including early onset (17–19).

Some of the current treatments for bipolar disor-
der act directly or indirectly on circadian mecha-
nisms, which may contribute to therapeutic effects
(2). Lithium modulates the expression of central
and peripheral clock genes (20–23), and the ampli-
tude and timing of effects may differ between
responders and non-responders (24). Lithium also
has phase-delaying properties and may resynchro-
nize overly fast circadian rhythms (2, 21). Other
treatments for bipolar disorder that may modify
circadian systems include valproate (2, 25) light
and dark therapy and sleep deprivation (1, 26),
and blue light blocking glasses (27).

The importance of the circadian system to
human health is becoming clearer from recent
research, as summarized briefly. Over the course of
evolution, life on Earth has adapted to the Sun
(28). Humans have endogenous circadian timing
cycles for nearly every physiological, metabolic,
and behavioural system allowing for anticipation
of light and dark, and adaptation to seasonal
changes and environmental challenge (29–31). The
cycle length of endogenous circadian rhythms is
not exactly 24 h and must be regularly synchro-
nized to the natural 24-h light–dark cycle that
arises from one rotation of the Earth on its axis
(32). Sunlight is the primary and most potent

signal that entrains human circadian systems to
the natural environment. Specialized non-visual
receptors, photosensitive retinal ganglion cells
(pRGC), express the melanopsin photopigment
that is sensitive to short-wavelength blue light (33).
The pRGC detect environmental fluctuations in
light and project primarily to non-visual centers of
the brain including the suprachiasmatic nucleus
(SCN) in the hypothalamus (34). The SCN is the
master pacemaker over a system that includes cir-
cadian clock genes expressed in the SCN, and
throughout the rest of the brain, peripheral tissues
and cells (35, 36). The signals from the pRGC
entrain the SCN (37), which integrates the external
signals with signals from internal activities, and in
turn entrains the peripheral circadian clocks (35,
36). Timekeeping for optimal diurnal physiological
processes and mental health requires both synchro-
nization of the circadian systems with the natural
environment, and internal system-wide circadian
coordination.

Aims of the study

As the onset of bipolar disorder is highly variable,
it is important to understand the factors that may
influence it, including environmental (38, 39). We
previously found a large, significant, inverse rela-
tion between the maximum monthly increase in
solar insolation (incoming solar radiation striking
the Earth’s surface) and the age of onset of bipolar
I disorder (40, 41). This effect was reduced in those
without a family history of mood disorders and
was smaller for those with a first episode of mania
rather than depression. The aim of this analysis
was to confirm that the relations found previously
were not sample specific, by repeating the analyses
using significantly more data from geographically
dispersed countries.

Methods

The data were collected by researchers at 50 collec-
tion sites in 32 countries. In the Northern Hemi-
sphere, the collection sites were Aalborg,
Denmark; Aarhus, Denmark; Ankara, Turkey;
Athens, Greece; Bangalore, India; Barcelona,
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Spain; Beer Sheva, Israel; Cagliari, Italy (2 sites);
Calgary, Canada; Dresden, Germany; Halifax,
Canada; Helsinki, Finland; Hong Kong; Hyder-
abad, India; Kampala, Uganda; Kansas City, KS,
USA; Khanti-Mansiysk, Russia; Kuala Lumpur,
Malaysia; Los Angeles, CA, USA; Medellı́n,
Colombia; Mexico City, Mexico; Oslo, Norway;
Ottawa, Canada; Palo Alto, CA, USA; Paris,
France; Poznan, Poland; Rochester, MN, USA;
San Diego, CA, USA; Siena, Italy; Singapore;
Stockholm/Gothenburg, Sweden; Tartu, Estonia;
Thessaloniki, Greece; Tokyo, Japan; Trondheim,
Norway; Tunis, Tunisia; Vitoria, Spain; Wiener
Neustadt, Austria; Worcester, MA, USA, and
W€urzburg, Germany. In the Southern Hemisphere,
the collection sites were: Adelaide, Australia; Bue-
nos Aires, Argentina; Cape Town, South Africa;
Melbourne/Geelong, Australia; Porto Alegre,
Brazil; Salvador, Brazil; Santiago, Chile (2 sites);
and S~ao Paulo, Brazil. This analysis combined
newly collected data with data collected and ana-
lyzed previously.

Approval for this study was obtained from local
institutional review boards according to local
requirements. All patients had a diagnosis of bipo-
lar disorder according to DSM-IV criteria from a
psychiatrist, with age of onset defined as the first
occurrence of an episode of mania, hypomania, or
depression. Other patient data in this analysis were
sex, family history of a mood disorder in any first
degree relative, and polarity of the first episode.
Data were obtained retrospectively by direct
questioning, reviewing records, or both.

Solar insolation

Solar insolation is defined as the amount of elec-
tromagnetic energy from the Sun received on Earth
for a given surface area at a given time, expressed
in kilowatt h/square meter/day (kWh/m2/day)
(42). Several factors determine the intensity of
solar insolation including the angle at which the
Sun’s rays strike the Earth’s surface, time of day,
latitude, atmospheric conditions, surface reflection,
and the Earth’s tilt. The tilt of Earth’s axis relative
to the plane of its orbit around the Sun results in
the seasonal changes in solar insolation and day
length (43). The pattern of monthly changes in
solar insolation varies by latitude, with very little
monthly change near the equator and larger
monthly changes as one nears the poles. However,
locations at the same latitude may have different
patterns due to local conditions such as altitude,
cloud cover, and proximity to bodies of water.

All solar insolation data were obtained from the
National Aeronautics and Space Administration

(NASA) Surface Meteorological and Solar Energy
(SSE) database version 6.0, which is based on glo-
bal data collected by satellite for 22 years between
1983 and 2005 (42). The average monthly solar
insolation data are available with a spatial resolu-
tion of 1° 9 1° latitude/longitude. The actual
onset locations were grouped into reference onset
locations, which represent all locations in the
1° 9 1° grid of latitude and longitude. The number
of reference onset locations from a collection site
varied greatly, influenced by country size, migra-
tion patterns, and cultural factors. The reference
onset locations were used in all analyses. All solar
insolation data were shifted by 6 months for onset
locations in the Southern Hemisphere to compare
with data from the Northern Hemisphere. Solar
insolation is an appropriate variable for a sample
with multiple birth-cohorts as the incoming global
average, annual mean solar insolation has
remained essentially unchanged over the last
2000 years (44).

The monthly change in solar insolation was cal-
culated as the difference between the current
month minus the previous month. The maximum
monthly increase in solar insolation was defined as
the largest monthly increase over the year. The
interaction between the maximum monthly
increase in solar insolation 9 family history and
the maximum monthly increase in solar insolation
9 polarity of first episode were also analyzed.

Birth-cohort

The birth-cohort was included in all analyses as an
older age of onset of bipolar disorder in older
cohorts was reported in many studies (40, 41, 45–
47). Three birth-cohort groups were created, for
those born before 1940, born between 1940 and
1959, and born 1960 or later, consistent with prior
research (40, 41, 45–47). In this sample, 34.6% of
the patients with bipolar I disorder were born
before 1960.

Country specific variables

As the onset of bipolar disorder spans several dec-
ades, an older mean age of onset would be
expected in a country with an older median age
(48, 49), and country median age was included in
the prior analyses. The country median age also
provides information about country socioeco-
nomic characteristics (50). However, in the current
sample, there was a 31-year difference in median
age between the oldest country (Japan 46.9 years)
and the youngest (Uganda 15.7 years) and more
socioeconomic variation among countries.
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Additional socioeconomic measures were obtained
to explain country specific differences in age of
onset: physician density of any specialty per 1000
population, GDP per capita, total health expendi-
tures as a per cent of GDP, and the Gini index of
income inequality (50).

Bipolar I disorder

Only data from patients with a diagnosis of bipolar
I disorder were included to be consistent with our
prior studies, and because there was a large imbal-
ance in the per cent of patients with a diagnosis of
bipolar I disorder at the collection sites, varying
from 99% to 23%. Also, there was a potential for
bias related to age of onset for those who received
a diagnosis before the criteria were expanded to
include bipolar II disorder.

Statistics

Estimates of the effects of solar insolation on the
age of onset were calculated using generalized esti-
mating equations (GEE) to account for the corre-
lated data and unbalanced number of data points
within each onset location (cluster). The GEE
model uses a population-based or marginal
approach to estimate the effect across the entire
population rather than within a cluster (51). An
exchangeable correlation matrix was selected for
the GEE models, which is appropriate for a large
number of clusters including many with a single
observation (52). Models were estimated for all
patients, and after excluding the patients born
before 1960 as in our prior studies. In all GEEmod-
els, the dependent variable was the age of onset.
Sidak’s adjustment for multiple comparisons was
used to make pair-wise comparisons between the
birth-cohorts. A significance level of 0.01 was used
for all evaluations. The corrected quasi-likelihood
independence model criterion was used to assist
with model evaluation (53). SPSS version 24 (IBM,
Armonk, NY, USA) was used for all analyses.

Results

Patients and onset locations

Data were collected for 7392 patients with bipolar
disorder. Of these, 5536 had a diagnosis of bipolar
I disorder and were included in the analysis. Of the
5536 patients, 3221 (58.2%) were female, and 2314
(41.8%) were male. Family history was available
for 4698 of the 5536 patients (84.9%), and of the
4698 patients, 2567 (54.6%) had a positive family
history. The polarity of the first episode was

available for 5055 of the 5536 patients (91.3%),
and of the 5055 patients, the polarity was mania
in 2543 (50.3%) and depression in 2512 (49.7%).
The unadjusted mean age of onset was 25.4 �
10.6 years.

The onset of bipolar disorder for the 5536
patients occurred in 456 unique onset locations in
57 countries. The average number of patients in
each onset location was 12.1, with 240 of the 5536
patients (4.3%) in an onset location of one. Of
the 5536 patients, 4283 (77.4%) had onset in the
Northern Hemisphere and 1253 (22.6%) in the
Southern Hemisphere (Table 1). The number of
patients, onset locations, and onset countries in
this study was considerably larger than in our prior
studies (Table 2).

Solar insolation

The largest maximum monthly increase in solar
insolation occurred in the northern latitudes such
as the Nordic countries, Russia, Estonia, and
Canada, and in warm dry areas in Chile, USA,
Mexico, Greece, and South Africa. The smallest
changes occurred near the equator in Uganda,
Colombia, Malaysia, and Brazil (Table 3). The
maximum monthly increase in solar insolation
occurred in springtime in both hemispheres.

Table 1. Latitude of patient onset locations

Degrees latitude
(north and south)*

Number of
patients

Number of
onset locations

0–9 473 30
10–19 413 54
20–29 315 34
30–39 1957 120
40–49 1654 157
50–59 464 46
60–69 259 14
70–79 1 1
Total 5536 456

*1253 in the Southern Hemisphere.

Table 2. Number of patients by study

Study date
Number of patients
with bipolar I disorder

Number of
onset locations

Number of
onset

countries

2012 (40) 2414 180 24
2014 (41) 4037 318 43
2017 5536 456 57
Per cent increase
between 2012
and 2017 studies (%)

129 153 138

Per cent increase
between 2014
and 2017 studies (%)

37 43 33
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Excluding the locations near the equator that have
little change to solar insolation throughout the
year, the maximum increase occurred between
February and March at 41.1% of onset locations,
between March and April at 35.4% of onset loca-
tions, and between April and May at 13.4% of
onset locations.

Model estimates

The best model to assess the relation between solar
insolation and the age of onset included the inter-
action of the maximum monthly increase in solar
insolation 9 family history, the birth-cohort and
the physician density, as shown in Table 4. There
was a significant inverse relation between the

maximum monthly increase in solar insolation and
the age of onset, labeled Model 1. For every
0.1 kWh/m2/day increase in the maximum
monthly increase in solar insolation, there was
approximately a 0.57-year (6.8 months) decrease
in the age of onset. Alternatively, comparing the
largest (1.7) to the smallest (0.3) maximum
monthly increase in solar insolation, Model 1 sug-
gests an 8-year decrease in the age of onset (1.4
range in maximum monthly increase in solar inso-
lation * �5.702 estimated coefficient). This effect
was reduced by about 30% if there was no family
history. The inverse relation was also found when
including the interaction of the maximum monthly
increase in solar insolation 9 polarity of first epi-
sode, the birth-cohort and the physician density,
labeled Model 2, with the effect about 20% smaller
for a first episode of mania (5.3 months). The
results were similar when models 1 and 2 were esti-
mated excluding the patients born before 1960 and
the birth-cohort (Models 3 and 4 in Table 5).

Of the 5536 patients, 287 (5.1%) were born
before 1940, 1631 (29.5%) were born between 1940
and 1959, and 3618 (65.4%) were born in 1960 or
later. The birth-cohort was significantly associated
with age of onset (P < 0.001). In Model 1, com-
pared to the youngest birth-cohort born in 1960 or
later, those born before 1940 had an onset
15.7 years older, and those born between 1940 and
1959 had an onset 7.7 years older.

The model estimates were improved when physi-
cian density was used to explain socioeconomic
differences rather than the country median age (40,
41). Because the model has changed, these results
cannot be directly compared with our prior stud-
ies. The other economic variables were not signifi-
cant or the models were not as good. The
collection site was considered to be an adequate
proxy for the onset location at some sites: Barce-
lona, Cape Town, Helsinki, Melbourne/Geelong,
Salvador, Stockholm/Gothenburg, and W€urzburg.
The best models were estimated excluding all data
from these collection sites and results remained sig-
nificant (P < 0.001). Compared with other solar
insolation variables, models including the maxi-
mum monthly increase in solar insolation
remained the best.

Discussion

Despite increasing the number of patients, onset
locations, and countries, the findings from our
prior studies were confirmed. The maximum
monthly increase in solar insolation was inversely
associated with the age of onset of bipolar disor-
der. The effect was reduced in those without a

Table 3. Some examples of the maximum monthly increase in solar insolation at
onset locations

Onset location

Maximum monthly
increase in solar

insolation
(kWh/m2/day) Latitude

Kampala, Uganda 0.3 0.3 N
Medellín, Colombia 0.3 6.3 N
Hong Kong 0.6 22.5 N
Kuala Lumpur, Malaysia 0.6 3.2 N
Salvador, Brazil 0.6 12.9 S
Bangalore, India 0.7 12.9 N
S~ao Paulo, Brazil 0.7 23.5 S
Tokyo, Japan 0.7 35.7 N
Singapore 0.7 1.3 N
Hyderabad, India 0.8 17.4 N
Mexico City, Mexico 0.9 19.4 N
Boston, MA, USA 1.0 42.2 N
Rochester, MN, USA 1.0 44.0 N
Porto Alegre, Brazil 1.0 30.0 S
Nova Scotia, Canada 1.1 45.1 N
Adelaide, Australia 1.1 34.9 S
Thessaloniki, Greece 1.1 40.6 N
Tunis, Tunisia 1.1 36.8 N
Melbourne, Australia 1.1 37.5 S
Barcelona, Spain 1.2 41.4 N
Paris, France 1.2 48.9 N
Ankara, Turkey 1.2 39.9 N
San Diego, CA, USA 1.2 32.4 N
Buenos Aries, Argentina 1.2 34.6 S
Cagliari, Sardinia, Italy 1.3 39.2 N
Dresden, Germany 1.3 51.1 N
Bordeaux, France 1.3 44.8 N
Calgary, Canada 1.4 51.1 N
Beer Sheva, Israel 1.4 31.2 N
Valparaiso, Chile 1.4 33.0 S
Tartu, Estonia 1.4 58.4 N
Athens, Greece 1.5 38.0 N
Los Angeles, CA, USA 1.5 34.0 N
Santiago, Chile 1.5 33.3 S
Helsinki, Finland 1.5 60.2 N
Cape Town, South Africa 1.5 33.9 S
Talca, Chile 1.6 35.4 S
Oslo, Norway 1.6 59.9 N
Khanti-Mansiysk, Russia 1.6 61.0 N
Stockholm, Sweden 1.6 59.3 N
Trondheim, Norway 1.7 63.4 N
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family history of a mood disorder and with an
onset of mania rather than depression. This confir-
mation using a larger and more diverse sample
with collection and onset locations on six conti-
nents, and when only including the youngest birth-
cohort, suggests that these findings are not due to
chance. As with the prior studies, the maximum
monthly increase in solar insolation occurred in
springtime. The effect was related to the size of the
maximum monthly increase, regardless if starting
from a low level of solar insolation at very north-
ern latitude, or from a medium level at a mid-lati-
tude desert.

From a clinical perspective, physicians should
recognize the potential for a younger age of onset
in locations with a large increase in sunlight in
springtime, and the potential for an older onset in
areas with little seasonal change. The interaction
with family history suggests that a genetic predis-
position to bipolar disorder involves circadian dys-
regulation (18). The findings also emphasize the
importance of obtaining a family history from all

patients, especially as the age of onset was younger
in the youngest birth-cohort. Early onset bipolar
disorder is associated both with family history and
with poorer outcomes (54–57).

These models were different from our prior anal-
yses due to the inclusion of physician density.
Using data from such diverse countries, it is not
surprising that having an important socioeconomic
variable in addition to the maximum monthly
increase in solar insolation improved the model for
age of onset. The physician workforce directly
impacts health outcomes (58, 59) and varies greatly
between high- and low-income countries and
within high-income regions, and especially for
mental health (60, 61).

Recent and remarkable societal changes relating
to light exposure may be contributing to the
increased vulnerability to a springtime circadian
challenge in the youngest birth-cohort and may be
of particular concern for future generations. These
include the conversion from incandescent to LED
(light-emitting diode) lighting, the use of mobile

Table 4. Estimated coefficients of parameters explaining age of onset of bipolar I disorder

Parameters Coefficient estimate Standard error

99% Confidence
interval Coefficient significance

Lower Upper Wald chi-square P

Model 1* N = 4698
Maximum monthly increase in solar insolation �5.702 0.932 �8.102 �3.301 37.423 <0.001
No family history 9 maximum monthly
increase in solar insolation

1.733 0.247 1.097 2.369 49.288 <0.001

Model 2† N = 5055
Maximum monthly increase in solar insolation �5.491 1.008 �8.088 �2.895 29.685 <0.001
First episode manic 9 maximum monthly
increase in solar insolation

1.037 0.269 0.345 1.729 14.901 <0.001

*Dependent variable: Age of Onset. Model: intercept, physicians per 1000 onset country population, maximum monthly increase in solar insolation, no family history 9

maximum monthly increase in solar insolation and birth-cohort group.
†Dependent variable: Age of Onset. Model: intercept, physicians per 1000 onset country population, maximum monthly increase in solar insolation, first episode manic 9

maximum monthly increase in solar insolation and birth-cohort group.

Table 5. Estimated coefficients of parameters explaining age of onset for patients with bipolar I disorder born in 1960 or later

Parameters Coefficient estimate Standard error

99% Confidence
interval Coefficient significance

Lower Upper Wald chi-square P

Model 3* N = 3101
Maximum monthly increase in solar insolation �4.676 0.838 �6.835 �2.517 31.118 <0.001
No family history 9 maximum monthly increase in solar insolation 1.240 0.255 0.584 1.897 23.694 <0.001

Model 4† N = 3308
Maximum monthly increase in solar insolation �4.626 0.831 �6.766 �2.487 31.023 <0.001
First episode manic 9 maximum monthly increase in solar insolation 1.524 0.279 0.805 2.242 29.854 <0.001

*Dependent variable: Age of Onset. Model: intercept, physicians per 1000 onset country population, maximum monthly increase in solar insolation, and no family
history 9 maximum monthly increase in solar insolation.
†Dependent variable: Age of Onset. Model: intercept physicians per 1000 onset country population, maximum monthly increase in solar insolation, and first episode
manic 9 maximum monthly increase in solar insolation.

7

Solar insolation and onset of bipolar disorder



devices backlit with LEDs, and the rise of a 24-h
society. The Nobel Prize in physics in 2014 was
awarded to Isamu Akasaki, Hiroshi Amano, and
Shuji Nakamura for the invention of the blue LED
in the 1990s, which enabled a new method for
semiconductors to create white light (62). LEDs
are energy-efficient, requiring 85% less energy than
incandescent light bulbs (63), and are long-lasting.
Conversion to LEDs has been extremely rapid,
with 69% of all light bulbs sold worldwide
expected to be LEDs by 2020 (63). However, dif-
ferences in the properties of LEDs may have physi-
ological impact. Incandescent lights have a
dominant wavelength of 574 nm, close to the peak
sensitivity of photopic photoreception of 555 nm
(64, 65). In contrast, white LEDs have a dominant
wavelength of 482 nm, in the blue light range,
close to the peak sensitivity for circadian photore-
ception (~480 nm for melanopsin and ~460 nm for
melatonin suppression) (33, 64, 66).

Compared to the past, many people today expe-
rience darker days and brighter nights (28). In the
daytime, people are spending more time indoors
and all indoor lighting (incandescent and LED) is
vastly dimmer and has a different spectral pattern
than the Sun. Unlike with vision, people are not
aware if they do not receive enough daytime light
for circadian needs (65). In the night-time, indoor
lighting is a necessity, but long-term effects of
exposure to LEDs after sunset on the circadian
system are unknown. Sufficient darkness during
the dark phase of the light–dark cycle is needed for
melatonin secretion and optimal entrainment (67).
Additionally, about 80% of the world’s population
lives where the night sky brightness is above the
threshold for light pollution (68), and high-inten-
sity LED streetlights pose a health threat (69, 70).
International lighting industry standards were
optimized for vision. The complexity of non-visual
physiological responses and the need to balance
benefits and harmful effects pose many challenges
for developing new standards (29, 70, 71). The
intensity, spectrum, duration, and timing of all
lighting, and prior light and dark exposure may all
impact circadian entrainment (29,71–72).

Digital devices, such as smartphones, eReaders,
tablets, video games, computer screens, and TV
sets, are backlit with LED light to enhance the
daytime brightness and contrast (73, 74). While
well suited for the screen size of mobile devices,
LEDs emit bright blue light. In the USA, 72% of
adolescents used a cell phone in the hour before
bedtime (75), and many adolescents in Belgium
used a cell phone after lights out (76). Recent
investigations report an association between eve-
ning use of technology (smartphones, computers,

and eReaders) and reduced melatonin secretion in
healthy adults and adolescents (77–79), and
decreased sleep in children and adults (75, 77, 80,
81). In a systematic review of 67 international stud-
ies of children and adolescents, increasing screen
time was associated with an adverse sleep outcome
(82). The heavy use of mobile technology by chil-
dren and adolescents is of particular concern.
Early pubertal children have increased sensitivity
to evening light as measured by melatonin suppres-
sion (83), and transmission of blue light in the
young is much greater than in the old due to aging
of the crystalline lens and loss of pupil area
(65, 84).

Daily patterns of light exposure reflect individ-
ual preferences and societal requirements (29, 35).
Recently, competitiveness, consumer demand, and
globalization are creating a 24-h society (85). The
continuous provision of goods and services offers
considerable customer convenience, but requires
that many people work non-traditional and irregu-
lar work schedules, including late night and early
morning. Yet people with bipolar disorder may be
especially vulnerable to the circadian disruption
experienced by shift workers (86, 87). The impor-
tance of regularity in daily patterns of exposure to
circadian stimuli may be greatest for individuals
who have suboptimal circadian function (88). The
increase in irregular work schedules is occurring
worldwide (89, 90), with 35% of employed
persons in the USA having flexible work hours in
2012 (91).

Limitations

The process of data gathering was not standard-
ized across all collection sites, although based on
the DSM-IV criteria. Family history data were not
validated and may be unreliable. There may be
recall bias with self-reported age of onset in rela-
tion to episodes early in life or of less severity. The
sample was not demographically representative of
the country populations. However, the unadjusted
mean age of onset in the sample of 25.4 �
10.6 years was similar to that in other interna-
tional studies: 25.7 years for bipolar I disorder (54)
and 25.6 years for any bipolar disorder (92).
Although 79% of the samples were from the
Northern Hemisphere, about 87.5% of the world’s
population lives there (93). There was no individ-
ual data on sun exposure, sun-related behaviours,
shift work, technology use, skin type, serum vita-
min D levels (94), or retinal abnormalities (95, 96).
There was also no individual data on perinatal
light exposure, which may impact future circadian
resilience (97, 98). Other functions stimulated by

8

Bauer et al.



blue light including direct enhancement of cogni-
tion (99) were not considered. Societal changes
unrelated to light were not considered, including
the tumultuous events of the twentieth century that
impacted the older birth-cohorts (46). There was a
downward bias in the age of onset of the youngest
birth-cohort due to the absence of individuals with
late onset bipolar disorder, ascertainment bias,
and the potential for earlier mortality in those with
early onset (48, 100, 101). Data from the Southern
Hemisphere was shifted by 6 months, which dis-
counts the cultural dimensions of seasonality. The
model results show an association but cannot show
causality. However, the impacts of circadian dis-
ruption on the course bipolar disorder needs to be
studied, whether or not the association is causative
(102).

In conclusion, a large increase in the maximum
monthly solar insolation in springtime may influ-
ence the onset of bipolar disorder, especially for
patients with a family history of mood disorders.
The larger the maximum monthly increase in solar
insolation, the younger the onset of bipolar disor-
der. With the youngest age of onset in the youngest
birth-cohort, recent societal changes that may
impact adaptability to a circadian challenge need
investigation. These include LED lighting, mobile
technology backlit with LEDs, and 24-h lifestyles.
While country conditions such as physician density
are beyond the individual’s ability to control, indi-
vidual behaviour directly impacts light exposure
and darkness at night. Perhaps, treatment recom-
mendations for bipolar disorder may include opti-
mum daytime and night-time light exposure,
including from technology.
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